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ABSTRACT

Given 1 < p < oo and a real Banach space X, we define the p-absolutely
summing constant x(X) as inf{sup[ T 1 x*(x)) |P/ Sl xdlf’]‘/”}, where
the supremum ranges over {x* € X*; |lx*| <1} and the infimum is taken
over all sets {xl,xz,. .,x,,,}cX such that 3/Z| x; ||>0. It follows im-
mediately from {2] that g,(X) > 0 if and only if X is tinite dimensional. In this
paper we find the exact values of pp(X) for various spaces, and obtain some
asymptotic estimates of u,(X) for general finite dimensional Banach spaces.

1. Preliminaries and definitions. The results obtained here are in part related
to those in [3]. We recall briefly some basic definitions: the projection constant
of a Banach space X is defined as A(X) =inf{A > 0; from every Banach space
Y o X, there is a projection onto X with norm < 1}.The Macphail constant is
defined as u(X) = inf {sup, | Z;,x;{ | ZJ1 | x; ]}, where J ranges on the subsets
of {1,2,+:-,m}, and the infimum is taken over all finite sets {x;,x,,--*,x,} = X
such that ., “ X; " > 0. The distance d(X, Y) between isomorphic Banach spaces
X and Y is defined as inf{|| T|| | T™'||; T is an isomorphism of X onto Y}.
12 (1 £ p< o) denotes the space of real n-tuples x = (x;,x,,---,x,) with the
norm | x || ;= (Zf-1|x;|»)'?; I denotes the same space with the norm
| || o =max;| x;|. All the asymptotic values of u(13), A(5), d(, 1) (1 S p, g S )
are now known (see [3] for a short summary).

2. Formulation of results. We state here the main results which are to be

proved.

Received March 28, 1969, additions received June 11,1969,
* This is a part of the author’s Ph.D. Thesis prepared at the Hebrew University of Jerusalem,
under the supervision of Prof. A. Dvoretzky and Prof. J. Lindenstrauss.

151



152 YEHORAM GORDON Israel J. Math.,

THEOREM 1. Given a Banach space X, let K* be the w* closure of the set of
all the extremal points of the unit ball of X*. For any 1 £ p < 0, there is a
probability measure (i.e. a regular non-negative Borel measure with total mass 1)
v over K*, such that

) uX) = inf ( LJx*(x) | ”dv(x*))”p.

llxlf =1

Moreover, for every probability measure 8 over K* and every 1 < p < 0,
the following inequality holds

u(X) 2 inf ( L‘ | x*(x)| "d()(x*))”p.

llell =1

THEOREM 2. If1Z p< o0, then

@ ) = n~17,

3) u(12) = [T(/2T(p/2 + 1/2)[T(1/2)0(n]2+ p/2)]'?,

1/p
@) 1) = [f"n"’ Z(Z)In—ﬂcl”],

k=0

1/p
2n—1

(% b(G2p) = [(2'1)"1 ) ICOS(in/n)]"] s
i=0

where G,, is the space whose unit ball is the affine-regular 2n-sided polygon
in the Minkowsky plane.

THECREM 3. Let X be an n-dimensional real Banach space, then

6 pXysnt*, if15p£2,
©) pX) S ¢ VCD . if 28 p< oo,
B) XN (X*) £ c,n™ 3, if 1=p=<2,

©) XX E P if 2<p <4,
(10) X (X*) £ en~ 12, if 4<p<oo,
(c, denotes a constant depending only on p).

THECREM 4. Let X be an n-dimensicnal real Banach space, and Kg the
universal Grothendieck constant (n/2 £ K; £ sinh(n/2)). Then
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(1) Keu(X)dX,IDd(X,1;) 2 1.
12) Ko (X)d(X,ID)A(X) =1, forevery 1Sp=2.

We say that two functions f, g defined on the integers are asymptotically

equivalent and write f(n) ~ g(n) if sup,(f(n)/g(n)) < co and inf,(f(n)/g(n)) > 0.

THEOREM 5. For fixed p and r,

(n‘”2 ;ifl<rg2,1€p<®

, n~ir L if2<rL<p< o
H(ln) ~ 5
n~ir L ifrr—-1)SpSr<ow

nTH i 1< pSrfr - Sr<oo

-

RemARKS. Theorem 1 is a consequence of a result due to Pietsch [7] who
introduced the notion of p-absolutely summing operators, a variant of his result
may also be found in [6, Proposition 3.1]. The proofs of Theorems 2, 3 are based
on Theorem 1, and Theorem 3 generalizes a consequence of [2, Theorem 4] which
states that pu,(X) £ 2n '* if X is n-dimensional. Theorem 4 is an application
of Theorems 4.1 and 4.3 of [6]; (11) was essentially proved in [3]. Theorem 5
furnishes the asymptotic behaviour of u,(I;) for all fixed values of 1 < p < 0 and
1<r<oo.

3. Proof of Theorem 1 and its consequences. Let C(X*} be the space of
real continuous functions on the set K* which is compact in its w* topology.

For every xe X, let ¢, C(K*) be defined by ¢, (x*)= | x*(x) |”. Assuming that
#,(X)>0, let M be the closed convex hull of the set {u, *(X)¢,; | x | =1} = C(K*),

and let N = {f € C(K*); sup,«.xf(x*) < 1}. It is easily verified that M and N
are disjoint convex sets, hence there is a functional in C*(K*), i.e. a regular
Borel measure v’ on K*, such that j fav'=z1 > j gdv' for every feM,
g€ N. Since N contains the negative functions and the open unit ball of C(K*),
it follows that v’ is non-negative and that v/ = av where 0 < g < 1, and v is a proba-
bility measure. Therefore, J' fdv = 1 for every f e M. The proof of the second part
of Theorem 1 is trivial and yields the equality in Equation (1).

CorOLLARY 1. If1<p<q<w,then

(13) Hi(X) < ) < ().
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Proof. Using Hélder’s inequality in (1), we get for every x e X,
llp(X) ” X ” < (fx IX*(X)I”dv(x*)) 1/p < (f lx*(x)quv(x*))llq
* K‘
and by the second part of Theorem 1, u,(X) £ u,(X).

Again, use of (1) yields
I76.0] £ e fK‘ [ %) | %dv(x*) < [ x |77 f ¥ [7dx"), hence
w0 | x| = ( f . lx*<x>|”dv<x*))‘“’, therefore u”(X) < p,(X).
CoROLLARY 2. If X is n-dimensional, then

(14) p(X)dX, ) S 1.

Proof. Assuming that u,(X) > 0, the inequality
1/2
ol ([ Je@raen) <|x]

implies that X is isomorphic to an n-dimensional subspace of the Hilbert space
L,(K*,v), and since such a subspace is isometric to 12, (13) follows immediately.

4. Proof of Theorem 2. We first establish the following Lemma.

LEMMA. Let X be an n-dimensional real Banach space. There is a probability
measure v* which satisfies (1), and which is invariant under all isometries of X-

Proof. Let v be any probability measure which satisfies (1), and let 0X be the
compact topological group of all isometries of X onto itself. If T€0X, then
T*K* = K*, and denoting by v; the measure defined by dvy(x*) = dwW(T*x*), we
have for every xe X

w0 | Tx | = w0 | x] £ ( L |l dv(x*))w

= ( L‘ | T*x*(x)| "dv(T*x*))”p = ( L | x*(Tx) ]”dVT(x*))”p,

and thus we get

1/p
pX ] x| (L‘ |x*(x)|”dv7(x*)) , for every xe X, T e0X.
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Let dm denote the unique normalized non-negative Haar measure defined for
the compact topological group 0X, and define the measure v* by v*(A4)
= [ oxvr (A) dm(T), where A is any Borel subset of K*. Obviously v* is a probability
measure which satisfies (1), and for any S€0X and any Borel subset A < K*,
we have

(15) VH(S*4) = L (S*A)am(T) = L Vsr(4)dm(T)

f vsr(A)dm(ST) = v¥(4).
ox

Proof of Theorem 2. Let ¢; and ¢f (1 £i<n) denote the usual basis of
I° and (I®)* =1} respectively. Obviously K* is the set {es, — es}--,en, — e} }.
By (15), v*({e}})= v*({ — €}}) = 1/2n for every 1 £ i < n, and by Theorem 1

Hed) inf( | x*(x) [Pdv*(x*); [%|o= 1)
o

= inf (n"l 2 &7 ; max|&| =1) =n"1
i=1 i

this establishes (2).

In the case of I2, K* =S, , = {x;] x|, =1}, and by (15), v* is the usual
normalized (n — 1)-dimensional measure defined on S, _,. Denoting this measure
by dm,_, we have by Theorem 1

) = ot [

Sew1

| P, 2] = 1)

This integral is independent of the choice of x € S,_;, and taking x = (1,0,--+,0)
let y = (yy,-» yw) €S,-1 be defined by spherical coordinates

y; =sin8,, y, = cosf sinby, -, y,—y =cosfy ---cosf,_,sinb,_,,

Y, =€080;+-cos0,_y, —m[256,Sm2 (1Lign—-2),
— 7 £0,_, <, and dm,_,(y)= 0,1, cos" %,c08" %0, -+ cos 8, ,db, -+ db,_,,

where o,_, is the usual (n — 1)-dimensional measure of S,-;. Now,
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n/2
B = [ 1 s0) = 20,700 [ a0, cos™20,ds,
Sn-1 (V]

1
= (substituting, t =sin9;),”}0,-, f £ @02 (1 =32y
Qo

= 6,210,-,1(p/2 + 1/2)[(n[2 - 1/2)[T(n|2 + p/2)
= T(/QT(p/2 + 1/2)[TQA/DT(n]2 + p[2).
To prove (4), we note that K* is the set {2, ¢e;; 5= +1} and contains 2
points. By (15), v¥({e}) =2 7" for every e€ K*, and by Theorem 1,
1/p
pE(I) = inf{ ( f |x*(x)|”dv*(x*)) o x] = 1}
K*

i/p

By

= inf {(ﬂ z 27

i=+1

z Sifilp)
i=1
1/p

It is easily seen that | X, - ;27" Z{-, si5i|”) = f({&}) is a convex function
and f({&}) =f({ £&)), therefore f attains its minimum on X &l =1 at the
center of gravity of all x for which ¢ 2 0 for all i and & = 1, that is at the point
n~1(1,1,-,1). Hence

n 1/p " rn i/p
w(Ih) = ( T2 X sifil”) = (2'"11"’ Z(k)|n—2k\") .
&= +1 i=1 k=0

In the proof of (5), we make the following observations: K — the set of extremal
points of the unit cell of of G,,, may be represented by the set {f; = (cos(ni/n),
sin(ni/n)); i=0,1,--,2n—1}. K* is then the set {g;=cos ~'(n/2n)(cos((2i + 1)n/2n),
sin((2i + Dr/[2n))); i=0,1,---,2n — 1}. By (15), v*({g:}) = 1/2n for every i, and it
follows from the Lemma that for every isometry T of G,, and x€G,,,

JK. Ix*(Tx)]” dv¥(x*) = L. |x*(x) | Pdv¥(x*).

Now, since ,(G,,) =minyyy =y ([xe | ¥*(x)|?dv*(x*))'”?, we conclude that the
minimum is attained on the segment [ f;, f;]. The points on this segment are
represented by x,=tfo +(1 —0)f; 0=5t=<1), and (fx|x*(x) [Pdv*(x*))'/?
=[@n) " X5 |(g,x)[?]/?. This is a convex function of t, and receives the
same value at x, and x;_,. Hence, the minimum is attained at x;, = cos (n/2n)
[cos(n[2n), sin (n/2n)), and we get
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2n—1 1/p 2n—1 l/p
WCR e ,§0|(g,-,x1,2)|"] =[(2n)“’=20 lcos(in/n>["] .

REMARKS. The Macphail constant u(X), is essentially the constant u,(X),
for let {x;};Z, be any finite subset of X, it is easily verified that

m m
sup X [x*x)| = sup | T ex, §2sup( Xx; ;Jg{1,2,...’m})
fIx*l =1 i=1 =1} i=1 jel
< 2sup | X oex,
g =41 yi=1

thus p;(X) < 2(X) < 2p,(X). In [3, Theorem 2] it is shown that 2nu(X) < I(X)
if X is n-dimensional. It follows from Theorem 2 above and results established
in [4], that np,(X) = A(X) if X is any one of the spaces I, I2 I3, We also get that
MG,y = 2u4(G,,); AG,n) was calculated in [4].

Consider now the following generalization for p,. Let L be a finite dimensional
real vector space and S any closed convex body with 0 in its interior. The Minkowsky
functional corresponding to S is defined for each xe L by

x| s=inf{r>0;x/re S}.

Clearly || x|s is a non-negative, sublinear, positive-homogeneous function. Let
S* ={xeL; max, s(x,y) <1} and |x[s be the corresponding Minkowsky
functional. Tt is easily verified that if xeL, []x" s+ =max, . g(x,y) and [|xﬂs
= max, 5. (x, ) (Le. (S*)* = 5S). Define now p,(S) as inf {sup, s [Zi% 1 |(x;, ¥}
[Zr || x:|51"/?}, where the infimum ranges over all subsets {X, ,%,;
37y || xi|ls > 0} = L. Theorem 1 and the Lemma are seen to apply, with some
slight modification in the notation, for u,(S).

As an example, take S to be a polygon having (2n + 1) equal sides in
the 2-dimensional plane and O in its center of gravity. Exactly as in (5),
1(S) = [(@n + 1) “'E)|cos(2in/(2n + 1) [F].

5. Proof of Theorem 3. In the proof of (6) we use the following inequality
whose proof is obvious: If X, Y are isomorphic Banach spaces, then

(16) (X} = p(Y)d(X,Y), 1=sp<w.

Using (14) and (16) we get: 12 u;(X)d(X, 12) 2 u3(X)/p(12), and since by (3),
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p(2)=n""2, we have p(X)<n U4 By (13), p(X)Sp(X) sn”' if
1 £ p £2, this establishes (6).

We choose now a basis e, e,, -+, ¢, in X, such that (Zf-,; x})'? < [| Z/L x|
< (T, 2)Y2d(X,12) for any set of real numbers Xx,,--, X,. Let efe X* be
defined by ef(e;) = 6;; (1 £i,j < n). Clearly X, X*, 1% are respectively isometric
to the spaces of real n-tuples x = (x4, x5, -+, x,) with the norms

n n n 1/2
Ixlx= | Zxel, Ixle =] E el Dxla=( Z52) -
By the choice of the basis, we have for every x

an |xld s ]x

w S5l Sxlxslx]d d=d& 0.

By Theorem 1, there are probability measures v and v’ defined on K
=clext{x;|x[x <1} and K*=clext {x;] x|
for every x,

x+ S 1} respectively, such that

Bl < | lenkaro)

(18 B2l < [ leoPano.

Integrating the first inequality in (18) on S,_; with respect to the measure
dm,_(x), we get by (17)

B0 E0 [ xlam-@s [ avo) [ Jenlam-,o).

In the proof of (3) we saw that
fs |, ) [Pdm,_y(y) = || y | 5T (/2T (/2 + 1/2)[T(1/2)T(n]2 + p|2),

which is asymptotically equivalent to || y |5 »™?'* (as a function of n), hence there

is a constant a, such that
wpX) = apn_"’zf Iy ]2dv () S an™P2dP, ie p(X) < ay’n12g,
K‘
and using (13) and (14) we obtain, p?/>**(X) < p,(X)p,(X) < a;/”n™*/?, which

proves (7).
To conclude the proof, we multiply the two inequalities in (18), integrate the
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result on S, _; with respect to dm,_,(x), and use the inequality || x |x | x]x =1

(if x € S,—_1). We obtain

(19  EEHE" < f av'(y) f dv(v) f |5, 7) (5, 0) | Pdm, - ().
K* K n-1

We first estimate J = [g _, |(x,)(x,v)|’dm,_,(x) for the special case
y=(1,0,--,0), v={(cosh,sin8,0,---,0). Let 0 <8, <=, we may represent the
points X = (xb "'axn)esn-l by

X, = cosf,sin0,, x, =sinf;sinf,, x5 = cosf,sin b,
X4 = 080,08 03510 04, +++, X,y = €080, - c0s0,_,sind,_q,
X, = c0s0,---cosf,_,, where —n <0, <=, ~7/2=50,<7/2

@2<Lign—-2), and dm,_((x) = (n6,_,) "tcos" 20, - cosb,_,d0; - df,_y.
Then

J = f | sin®8, cos B; cos (B; — 0) | *dm,_ ,(x)
sn—l

nf/2

= (7 1f |cos 8, cos(8; —0)|7d0,)(20,_56,—3 j sin??0, cos*~30,d0,)
0 0

(7N

n/2
26, 50,3 fo sin?? §, cos”® 0,d0, = (substituting, t = sin’0,)

1
= 6,%,0,-3 f A ¢ ) Lt/
0
= o;10,_30(p + 1/2)L(n/2 — 1)/T(p + nj2 — 1)2),

which is asymptotically equivalent to n~?. Substituting this estimate of J in (19)

we get
weoue) S b7 [ 1y lEavo) [ Telgae s @yan)

@0) < bn " f 17dv'(3) f 1# dv(v) = b,n""d".
K K

Using in (20) the well known inequality, d(X,1?) £ \/n [5], which holds for
every real n-dimensional Banach space X, we obtain (10).
Rewriting (20) as u,(X)u,(X*) £ a,n ~14, multiplying by u,(X) and using (14),
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we get py (X) p, (X, (X*) < an”?, and by (13) gy P2(X)u(X*) L an™?
if p 2 2. Similarly p; *?*(X*)p(X) < a,n” ', and (9) follows by multlplying the

last two inequalities. Since p,(X)p(X*) £ p(X) po(X¥) S en™ 2P if 15 p <2,
(8) is also established.

REMARK. A result of [2, Theorem 4] is that u,(X) < 2n~'/% (6) strengthens
this inequality, and an even sharper one for n = 3 and p =1is p,;(X) £ ui/*(1?)
= (T(n/2)T(1/2)/T(n]2 + 1/2)"* < (2/n(n — 1))"/*. We do not know whether
the upper bounds of (6) and (7) are the best possible, and we think that they can be
improved to c,n ~Y23nd c,n ~ 1P respectively.

6. Proof of Theorem 4. We proved in [3] that Kou(X)d(X,12)d(X,I1)=1
and it is easily seen that the proof given there actually yields (11).

The proof of (12) is a direct application of Theorem 4.3 [6]. To see this, we
reproduce Definition 3.1 [6]: A Banach space X is called an %, ; space,1 < p £ o,
1 £ 1 < o0, if for every finite dimensional subspace B of X, there is a finite dimen-
sional subspace E of X containing B, such that d(E,[}) < A, (n = dimE).

A result arrived at in Theorem 4.3 [6] is: Let X be an &, ; space, and let Y be
an %, ,space, 1 < p < 2. For any finite subset {x;};~ ; = X, and any linear bounded
operator T from X into Y, the following inequality holds:

@ (E17x 1]2)”2 <Ko 7| sup ( £ 1x*(xi)12)”2.
i=1 lix¢ls1 \i=1

Since every finite dimensional space X is the limit of a sequence of polyhedral
spaces, and since the constants which appear in (12) are continuous functions of X,
we may assume X to be a polyhedral space. Then, embedding X in a suitable
IV space, let P:1y°~ X be a projection on X such that A(X) =| P|; there is
such P, for by [1], A(X) = min { | P |; Pis a projection of I§ onto X}.Let T: XI5
be an isomorphism such that | T| | T~'| = d(X, ). Then TP:ly°~ I}, and
by (21) we have for any subset {x;}7'< Iy

m 1/2 m 12 :
(22) ( 2 | TPx; []2) < K| TP| sup{( 2| y*(x) |2) s yxely |y*] £ 1}.
i=1 i=1
Taking in particular a subset {x;}] = X, and noting that sup{(Z/Z, | y*(x)|*)"'*;
yrely, | y* [ £ 1) =sup {(ZfL, | x*(=) |5 x*e X*, | x*| <1}, we get from
(22)
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m 1/2 m \1/2
(Z1=17) = 1m0l S1mal?)
i=1 i=1
m 1/2
< Ko|T T [PJsup(( T 1wel?) 5 xvexn [ 51)

m 1/2
= Kgd(X,DAX) sup{( ) Ix*(xi)lz) s xre X, |x*| =13,
i=1
which yields (12).
Using (21) we can improve on Corollary 2 [3],

COROLLARY. Let X be an n-dimensional subspace of I, then

MX) = Ky 2P n'l,

Proof. Let I:X —I' be tbe formal identity operator on X, and J be the
operator embedding X in [® and let ¢ >0. Y =JX is isometric to X, hence
there is a projection P of I” onto Y such that | P | < A(X) + & Now, IJ7'P
maps the £, ; +, space I” into the &£, , ., space I, so that for any subset {y;}T = 1%
we have by (21),

m 172 m 172

( T |17 'Py,] 2( < Kol +&)? | 177 P sup {(2‘, |y*(y.-)|2) s[y*] s 1}.
i=1 i=1

If in particular {y;}7 < Y, we get " 1J " 'Py, ” = ” Vi ” and

(£, 100Fs 1] 5 107 @ | = s Elr0oP il stter),

from which it follows that 1< Kg(1 + &)* (A(X) + e)u,(JX), and since & was

arbitrary and JX isometric to X, we obtain Kq;u,(X)AX) = 1.

Applying now the inequality p2(X) £ p,(X) £ 2u(X) £ n~* A(X), the proof is
concluded.

7. Proof of Theorem 5. We shall write f(n) < g(n) (or g(n) 2 f(n)) whenever
f, g are positive functions defined on the integers and sup,(f(n)/g(n)) < co. It is
easily verified from (3) that p,(I2) ~n™"/? for fixed values of p, and since
d(i2, 11 = n?7 1 for any 1 < r £ oo (see [3] for information and reference),
we get by (16)

23) ) £ p (AR 1) ~n~Y, i 2<r < o

Let r' = r/(r — 1) and {e,}}~,, {ef}, be the natural bases of /,"and 7" = (I}*)
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respectively, and let 6({¢}*}) = 1/n for every 1 <i < n. It follows from the second
part of Theorem 1, that

n i/p
@9 w@z i (Elacopa)” = intclxl 5] -
= min{n~?,n"1"},

Combining (23) and (24), we get

i=

(25) gy ~n~tr, if pzrz2
By the definition of p,(/;) we have that

n n ilp
@ wms e (Zlee@p] 2]l

x*|=1 \i=1
= n~ P sup( ” x "p/ " x [,-) = max {n~ 1P gy,

and on taking (24) and (26) we sce that

27 pA) ~i P i r2pz
Using the equivalence u,(X) < 2u(X) < 2p1,(X) and the result

u(lD) ~ min {n~ 112, 51"}

of [3] and (13), we obtain
(28) w7y = py(ly) ~ min{n T2 Y for 151 < co.

If r=r'Zpz1 we get by (28) p,()zn~"", and by (26) p () Sn™
that is
(29) pIy~n i rzrzpzl
Summing up, we see that equations (25), (27) and (29) conclude with the cas
r=22,0o>px1.
When 1 < r £2, it follows from (20) that
a0 ) 7 G2, ) = mV2
whence by (25), p,(l) Sn~ 2 if p2+' 2 2. For p=1 p,(I}) ~ u(ly) ~ n~?[3],
so that on using (13) we havefor p=2r'22and r' 2 ¢ 21,
s @) Sp) S pysnT

thatis p, () ~n~ "> forevery 1 <r<2and 1< p< oo.
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