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ABSTRACT 

Given 1 _ p < oo and a real Banach space X, we define the p-absolutely 
summing constant #p(X) as inf{ sup [ y.[n= 1 ]x*(x~) IP/E'~= tll xil!plllp}, where 
the supremum ranges over {x* ~ X*; llx*ll < 1 ) and the infimum is taken 
over all sets (x t ,x2  . . . .  Xm}~Xsuch that ~r'=~llx~ll>0. It follows im- 
mediately from [2] that pp(X) > 0 if and only ifXis finite dimensional. In this 
paper we find the exact values of pp(X) for various spaces, and obtain some 
asymptotic estimates of gu(X) for general finite dimensional Banach spaces. 

1. Preliminaries and definitions. The results obtained here are in part  related 

to those in [3]. We recall briefly some basic definitions: the projection constant  

o f  a Banach space X is defined as 2 ( X ) =  inf{2 > 0; f rom every Banach space 

Y D X,  there is a projection onto X with no rm < 2}. The Macphai l  constant  is 

defined as p(X) = inf{supj  1[ ~ j ~ j  x j i l l  ~Y'=111 x jll}, where J ranges on the subsets 

of  {1 ,2 , . . . ,m} ,  and the inf imum is taken over all finite sets {Xl,X2,..',Xm} C X 
such that  ~7=1 II xj II > 0. The distance d(X, Y) between isomorphic  Banach Spaces 

X and Y is defined as mf ( l l  TII II z-111; z is an i somorphism of  X onto Y}. 

I~ (1 < p < oo) denotes the space of  real n-tuples x = (Xl,X2,- '- ,xn) with the 

normllxll,=(r 7=xlx, l~ denotes the same space with the n o r m  

II x II --max, l x, I. All the asymptot ic  values of/l(/~), 2(1~), d(l~, l~) (1 < p ,  q < oo) 

are now known (see [3] for  a short  summary) .  

2. Formulation of results. We state here the main  results which are to be 

proved.  
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THEOREM 1. Given a Banach space X,  let K* be the co* closure of the set of 

all the extremal points of the unit ball of X*. For any 1 < p < 0% there is a 

probability measure (i.e. a regular non-negative Borel measure with total mass 1) 

v over K*, such that 

(fK J \1/,  (1) pp(X) = inf I . 
iixl[ = l  , 

Moreover, for every probability measure 0 over K* and ever), 1 < p < 0% 

the following inequality holds 

pv(X)_>_ inf (fg 
[Ixll =l * 

TFmOREM 2. I f  1 < p < oO, then 

(2) ~,(12) = n-  I/P, 

(3) 

\ l,tp 

Ix*(x)l"dO(x*)) . 

~p(l 2) = [F(n/2)F(p/2 + 1/2)/F(1/2)r(n/2 + p/2)] I/~, 

(4) up(l~) = [ 2 - " n  -p 

(5) /~p(G2.) = I ( 2 n ) - I  
2.-1 j 

x Icos( i~ /n) l '  , t=0 
where G2, is the space whose unit ball is the affine-regular 2n-sided polygon 

in the Minkowsky plane. 

THEGREM 3. Let X be an n-dimensional real Banach space, then 

(6) pp(X) = < n -1/4 , if  1 = < p < 2, 

(7) pp(X) -< cpn -lt(2+p), if 2 =< p < o% 

(8) ltp(X)l~p(X*) < cpn-2/3, /f 1 < p < 2, 

(9) Itp(X)l~p(X *) < %n -4/c4+p) = , if 2 < p < 4 ,  

(10) ~p(X)~(X*) < cpn- t/2, if 4 =< p < ~ ,  

(cp denotes a constant depending only on p). 

THECREM 4. Let X be an n-dirnensicnal real Banach space, and KG the 

universal Grothendieck constant (re]2 < K~ < sinh(rr/2)). Then 
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(11) K~/~,(X)d(X, 12.)d(X,l~n) > 1. 

(12) K~It2(X)d(X, IP,)X(X) >=1, for every l < p < 2 .  

We say that two functions f ,  g defined on the integers are asymptotically 

equivalent and write f (n)  ~ g(n) if sup,(f(n)/g(n)) < oo and inf,(f(n)/g(n)) > O. 

TrmOREM 5. For fixed p and r, 

/t (l') ,-~ p n 

n - 1/2 

n - f i r  

n - 1 / o  

; ifl<r<2,1<p<oo= = 

; i f 2 < r < p < o o  

; if r/(r - 1) = < p = < r < oo 

n-1+1/'  ," if  l=<p<=r/(r-1)=<r<oo 

REMARKS. Theorem 1 is a consequence of a result due to Pietsch [7] who 

introduced the notion of p-absolutely summing operators, a variant of his result 

may also be found in [6, Proposition 3.1]. The proofs of Theorems 2, 3 are based 

on Theorem 1, and Theorem 3 generalizes a consequence of [2, Theorem 4] which 

states that /~l(X) < 2n -1/4 if X is n-dimensional. Theorem 4 is an application 

of  Theorems 4.1 and 4.3 of 16]; (11) was essentially proved in [3]. Theorem 5 

furnishes the asymptotic behaviour of pp(l',) for all fixed values of 1 < p < ~ and 

l < r <  oo. 

3. Proof of Theorem I and its consequences. Let C(K*) be the space of 

real continuous functions on the set K* which is compact in its to* topology. 

For every x ~ X ,  let ~bxZ C(K*) be defined by 6x(X*)= I x*(x)l p. Assuming that 
/~p(X) > 0, let M be the closed convex hull of the set {~pP(X)~bx; tl x 11 = 1} = C(K*), 

and let N = {f~ C(K*); SUpx.~xof(x*) < 1}. It is easily verified that M and N 

are disjoint convex sets, hence there is a functional in C*(K*), i.e. a regular 

Borel measure v' on K*, such that f f d v ' > l  > fgdv '  for every f z M ,  

g ~ N. Since N contains the negative functions and the open unit ball of C(K*), 

it follows that v' is non-negative and that v' = av where 0<  a < 1, and v is a proba- 

bility measure. Therefore, .[fdv > 1 for every f z M .  The proof of the second part 

of Theorem 1 is trivial and yields the equality in Equation (1). 

COROLLARY 1. I f  1 < p < q < C~, then 

(13) .~(x) ~ .~(x) __< ~,~(x). 
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Proof. Using H61der's inequality in (1), we get for every x ~ X, 

and by the second part of Theorem 1, pp(X) <= pq(X). 

Again, use of (1) yields 

q<= fK. Ix*(~)l~dv(~*) <= Ilxll ~-p f~.l x*(x)l~dv(x*), hence #~(X) [I x 11 

#~/P(X) H x ]] < ( f  K, [x*(x) ]Pdv(x*)) '/p' therefore #~/P(X) < l~e(X). 

COROLLARY 2. If X is n-dimensional, then 

(14) p2(X)d(X, l~) < 1. 

Proof. Assuming that/~z(X) > 0, the inequality 

~2(x)llxll =< lx*(x)l~dv(x*) ---llxll, 

implies that X is isomorphic to an n-dimensional subspace of the Hilbert space 

L2(K*, v), and since such a subspace is isometric to l~, (13) follows immediately. 

4. Proof  of Theorem 2. We first establish the following Lemma. 

LEMMA. Let X be an n-dimensional reaI Banach space. There is a probability 
measure v* which satisfies (1), and which is invariant under all isometries of X. 

Proof.  Let v be any probability measure which satisfies (1), and let 0X be the 

compact topological group of all isometrics of  X onto itself. If  T cOX, then 

T ' K *  = K*, and denoting by v r the measure defined by dvr(x* ) = dr(T'x*), we 

have for every x ~ X 

. , (x) lIrx II-- ~,(x)ll x II =< I~*(x)]'dv(~*) 

and thus we get 

x~S ,  Z~OS. 
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Let dm denote the unique normalized non-negative Haar measure defined for 

the compact topological group 0X, and define the measure v* by v*(A) 

= .[ oxVr (A)din(T), where A is any Borel subset of K*. Obviously v* is a probability 

measure which satisfies (1), and for any S ~ 0X and any Borel subset A =_ K*, 

we have 

(15) v*(S*A) = foJT(S*A)dm(V)= fox ST(A)dm(r) 

= [ Vsr(A)dm(ST ) = v*(A). 
Jo x 

Proof  of Theorem 2. Let e i and e* (1 < i < n )  denote the usual basis of 
1,°~ and (I~)* = 1~ respectively. Obviously K* is the set { e * -  el,...,e~,* * - e*}. 
By (15), v*({e~})= v*({ - e*}) = 1/2n for every 1 < i < n, and by Theorem 1 

p oo #p(l , )  = inf (fJx*(x)[Pdv*(x*); Ilxll  = 1) 

= i n f (  n-x t=l ~[~ ' lp ;max[ l  ~ i l = l ) = n  
- 1  

$ 

This integral is independent of the choice of x ~ S,_ 1, and taking x = (1, 0,. . . ,  0) 

let y =  (y l , . . . , y , ) eS ,_ l  be defined by spherical coordinates 

Yl = sin 0t, Y2 = cos 0t sin 02,..-, y , -  1 = cos 01"" cos 0n-2 sin 0,_ 1, 

y, = cos 01"" cos 0n_ 1, - rr/2 < 0~ < zr/2 (1 < i < n -  2), 

- Ir <0~-1 < n, and dm~-t(y)= ~-11cos~-201cos"-302 ...cosO~_zd01 ." dO,-l,  

where an_ 1 is the usual (n - 1)-dimensional measure of S,_ 1- Now, 

= i n f  I(x,y)l dmn_l(y);llxll2 --- 1 . 
- - 1  

this establishes (2). 

In the case of I~, K* =Sn-1- - (x ; [ ]x [12  = 1}, and by (15), v* is the usual 

normalized (n - 1)-dimensional measure defined on S~_ l- Denoting this measure 

by drn~_l, we have by Theorem 1 



156 YEHORAM GORDON Israel J. Math., 

p 2 : t~ ~/2 
/~P</") = Js ]fx, y ) l 'dm._x(y)  = 2o-~-_~a._2Jo sin'O~ cos"-2OxdO~ 

n - 1  

fo' = (substituting, t = sin 200aZ_~o'._ 2 t(P-~)/2(1 - t)t"-a)/2dt 

= a221a,_2F(p/2 + l/2)F(n/2 - l12)/r(n/2 + p/2) 

= F(n/2)F(p/2 + l/2)/F(1/Z)F(n/2 + p/Z). 

To prove (4), we note that K* is the set {1~"_-~ eie~; e~ = __+_1} and contains 2 

points. By (15), v*({e}) = 2 -" for every e e K*, and by Theorem 1, 

/~p(l.)  = in f  I:(x)l'dv*(:) , II~II~ = X 

= inf 2 - "  ,,¢," , ~ :1¢ ,1 - -1 .  
e i 1 ~ f , = l  

) lip 
• • _ . - n  n _  F, P It is easily seen that E~,-±x2 I E i - i  ~ l  =f ({~})  is a convex function 

and f ({~,})=f({  +~,}), therefore f attains its minimum on ~[ 4,1 = 1 at the 

center of gravity of all x for which ~i > 0 for all i and E¢i = i, that is at the point 

n -  1 (1,1,..., 1). Hence 

p~(l~ I) 

In the proof of (5), we make the following observations" K - -  the set of extremal 

points of the unit cell of of G2,, may be represented by the set {f~ -- (cos(rri/n), 
sin(rti/n)); i = O, 1,...,2n - 1 }. K* is then the set {g~ = cos - 1 (r~/2n)(cos((2i + 1)z/2n), 

sin((2i + 1)rc/2n))); i=0,1 ,  ...,2n - 1}. By (15), v*({g~}) = l[2n for every i, and it 

follows from the Lemma that for every isometry T of G2, and x E G2,, 

£. lx*(zx)l'dv*(x*)= fK. Ix*(x)l'dv*(:). 

Now, since pp(G2~) = minIl~tl =1 (Jr.  I x*(x)]Pdv*(x*)) rip, we conclude that the 

minimum is attained on the segment [f0,f~]- The points on this segment are 

represented by x, = tfo + (1 - Oft (0 - t -< 1), and (y.l:(~,)l'd~*(x*)y/~ 
= [(2n)-t  Y~z_-"o ~ ] (g,,xt)IP] t/p. This is a convex function of t, and receives the 

same value at xt and xt_t. Hence, the minimum is attained at x~/2 = cos (rc/2n) 

.(cos (z/2n), sin (rr/2n)), and we get 



Vol. 7, 1969 O N p - A B S O L U T E L Y  S U M M I N G  C O N S T A N T S  O F  B A N A C H  SPACES 157 

= (2n)-* X I(g,,xl ,=)l'  =L(2n)-* ~: Icos(i=/n)l 'J  • 
i = 0  i=0  

REMAgKS. The Macphail constant #(X), is essentially the constant /~I(X), 

for let {x,}i== 1 be any finite subset of X, it is easily verified that 

[Ix*ll_-<l i = l  ~,= +x ~= i 8ixi / e J  

J/: __< 2sup ~ix~, 
el = ± 1  i 

thus /h(X)  < 2#(X) < 2/~1(X). In [3, Theorem 2] it is shown that 2n#(X) ~ 12(X) 

if X is n-dimensional. It follows from Theorem 2 above and results established 

in [4], that nlq(X) = 2(X) if X is any one of the spaces l~, l~, I, 1 . We also get that 

2(G2.) > 2/~1(G2.); 2(G2.) was calculated in [4]. 

Consider now the following generalization for p~. Let L be a finite dimensional 

real vector space and S any closed convex body with 0 in its interior. The Minkowsky 

functional corresponding to S is defined for each x e L by 

Ilxlls=inf{r>O;x/r~ s}. 
Clearly ]1 x I[s is a non-negative, sublinear, positive-homogeneous function. Let 

S * =  {xEL; maxy~s(x,y ) < 1} and llxlls, be the corresponding Minkowsky 

functional It is easily verified that if x e L ,  I1 II ~. =max:,~s(x,Y) and Ilxll~ 

= maxr~ s. (x, y) (i.e. (S*)* = S). Define now #p(S) as inf {sup, ~s. [Z,%1 I(x,, Y)I" 
/x~"olll~,ll~]',q. where the infimum ranges over all subsets {xl , . . . ,x , . ;  
: ~ o ,  II ~, I!~ > 0} ~ L. Theorem 1 and the Lemma are seen to apply, with some 

slight modification in the notation, for ltp(S). 
As an example, take S to be a polygon having (2n + 1) equal sides in 

the 2-dimensional plane and 0 in its center of  gravity. Exactly as in (5), 

/tp(S) = [(2n + 1) -1Z2_-" o I cos(2i~z/(2n + 1))lP] 1]p. 

5. Proof of Theorem 3. In the proof of (6) we use the following inequality 

whose proof is obvious: If  X, Y are isomorphic Banach spaces, then 

(16) /~,,(x) < ~, , (r )d(S ,  y) ,  1 < p < ~ .  

Using (14) and (16) we get: 1 _ #a(X)d(X, l~) > p](X)/pa(IZ,), and since by (3), 
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/t2(/2) = n -1/2, we have /~2(X) < n -x/+. By (13), #p(X) </t2(X) < n -1/+ if 

1 < p < 2, this establishes (6). 
We choose now a basis el, e2,-", e, in X, such that ( ~ = 1  x2) 1/2 < II ~ ,~ ,  x,e, II 

<(~,'~=l~)l/2d(X,l 2) for any set of real numbers xl, . . . ,x , .  Let e*~X* be 
defined by e*(ej) = tSij (1 < i,j < n). Clearly X, X*, l 2 are respectively isometric 

to the spaces of real n-tuples x = (xl,x2, ...,x,) with the norms 

/, n \1/2 

I[ x IIx = II ,=1 ~ x,e, II, II x llx* = It ,=, ~ x,e* I[, I[ x 112 = (,~1 x2) 

By the choice of the basis, we have for every x 

(17) l l~ l l2d- '~ l l~ l lx ,  z l l~ l l~ l l~ l lx~l lx l l~d ,  d=d(X,l~).  

By Theorem 1. there are probability measures v and v' defined on K 

= cl ext {x; I1 x ltx < i} and K * =  el ext (x; II x [Ix. < 1} respectively, such that 

for every x, 

/tg(x)llxll  fK, [(x'y)lPdv'(Y) 

(18) /tg(x,)llxll  ° l(x,o)iOdv(v), 

Integrating the first inequality in (18) on S . - I  with respect to the measure 

dm._ l(x), we get by (17) 

II x 

In the proof of (3) we saw that 

fs.-I  I (x, y)]°dm._ l(Y) = I] l]~r(n/E)r(p/2 + I/2)/F(1/E)F(n/2 + p/E), Y 

which is asymptotically equivalent to II y [If n-°12 (as a function of n), hence there 

is a constant ap such that 

/t~(S) < %n-P/2f Ilyll~av'(y) < apn-°/2d~ i.e. /to(X) < a~/°n-1/:d, 
,d K" 

and using (13) and (14) we obtain, /t~,/2+l(X)< p2(X)po(X)< a~l°n -1/2, which 

proves (7). 

To conclude the proof, we multiply the two inequalities in (18), integrate the 
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result on S , - 1  with respect to dmn-l(X), and use the inequality II x Ilxllx llx. ->-- 1 

(if x e s , _  1). We obtain  

(19) #p(X)lap(X p *=ffv'(y) f, dv(O) !(x,y)(x,v)l~'dmn-l(x). 
rl- 

We first est imate J = fs°_ll(x,y)(x,o)l"dm._l(x) for  the special case 

y = (1 ,0 , . . . ,0 ) ,  v = (cos 0, sin 0, 0, .. ., 0). Let  0 < 01 < ~, we m a y  represent the 

points  x = (Xl, "",  x,)  ~ S,_  1 by 

x l  = cos 01 sin 02, x2 = sin 01 sin 02, x3 = cos 02 sin 0a, 

x4 = cos 02 cos 03 sin 04, " ' ,  x ,_  i = cos 02""  cos 0,_ 2 sin 0n- 1, 

x ,  = cos 02""  cos 0n- 1, where - r~ < 0,_ 1 < n, - n/2 < 01 < n/2 

(2 < i < n - 2), and  dm,,_l(X) = (ntrn_2)-Xcos"-aO2...cosO,,_2dO1 ""dOn-1. 
Then 

J = I _  I s in202c°s01c°s(01 - O)[Pdm"-a(X) 
d ~  n - I  

fo = ( ~ -  [cosOlcos(Ol-O)lPdOl)(2~n-~._ 3 sin2p02 cos" -302d02)  

_< 2trn-J2trn_a sin2t'O2cos n-3 02dO 2 -~ (substituting, t = sin202) 

f' -1 t p-I/2 (1 - t)"/2-2dt 
~ n _ 2 ~ n _ 3  

0 

- 1  = ,~n_2~._~r(p + 1/2)r'(n/2 - 1 ) / r ( p  + n/2 - 1/2), 

which is asymptot ical ly  equivalent to n -p  . Substituting this estimate of  J in (19) 

we get 

__< b~n-~ f II YIIP2dv'(Y) f llvllCd~(o) --- (By (17)) #~(X)p~(X*) 
.I K JK 

(20) ___ b~n-'d,f l'd~'(y) f, Zd~(0-b,n-'e'. 
J K *  

Using in (20) the well known inequality, d(X, l~)< x/n [5], which holds for  

every real n-dimensional Banach space X,  we obtain (10). 

Rewrit ing (20) as #p(X)#p(X*) < apn -ld, multiplying by 1~2(X) and using (14), 
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we get P2 (X) pp(X)Itp(X*) < apn -1, and by (13) p~+P/2(X)#p(X*) < apn -1 

if p > 2. Similarly p~+P/2(X*)pp(X) <_ al, n -~, and (9) follows by multiplying the 

last two inequalities. Since &,(X)&,(X*) </~2(X)/~2(X*) < c2 n-2/3 if  1 < p < 2, 

(8) is also established. 

REMARK. A result of [2, Theorem 4] is that pl(X) < 2n-1/4, (6) strengthens 
1/2 2 this inequality, and an even sharper one for n > 3 and p = 1 is pl(X) < #1 (l.) 

= (F(n/2)F(I/2)/F(n/2 + 1/2)) 1/2 < (2/n(n - 1)) 1/4. We do not know whether 

the upper bounds of (6) and (7) are the best possible, and we think that they can be 

improved to cpn - X/2and cl, n - 1/~, respectively. 

6. Proof of Theorem 4. We proved in [3] that KGu(X)d(X, 2 1 l . ) d (X , l . )  > l 

and it is easily seen that the proof given there actually yields (11). 

The proof of  (12) is a direct application of  Theorem 4.3 [6]. To see this, we 

reproduce Definition 3.1 [6]: A Banach space X is called an Lapa space, 1 < p < m, 

1 _-__ 2 < m, if for every finite dimensional subspace B of X, there is a finite dimen- 

sional subspace E of X containing B, such that d(E, l. p) < 2, (n = dim E). 

A result arrived at in Theorem 4.3 [6] is: Let X be an £P~,~ space, and let Y be 

an Aep pspace, 1 =< p -< 2. For any finite subset {x~}~"= ~ c X, and any linear bounded 

operator T from X into Y, the following inequality holds: 

(21) ( ~ H T x i [ l z f / 2  ( " ) ' /  <= gGap II z II sup _z 1 l x*(x,)l '~ =. 
t = 1  [Ix* I I ~ l  i 

Since every finite dimensional space X is the limit of a sequence of polyhedral 

spaces, and since the constants which appear in (12) are continuous functions of X, 

we may assume X to be a polyhedral space. Then, embedding X in a suitable 

l~ space, let P:  IN°°-~ X be a projection on X such that 2 ( X ) =  II P ll; there is 

such P, for by [1], 20£) = rain {1I P II; e is a projection of l~ onto X}. Let T: X ~ I, p 

be an isomorphism such that II TII II T-111 =d(S,l'.), Then TP:I~--* IP,, and 

by (21) we have for any subset {xi}~'c l~ ° 

( )1,2 {(. 2 
(22) ~ il rPx, II 2 = gGll Ilsup ~lY*(x,) 12 ,=1  , ; Y ' e l L  IlY*]I ---- 1 " 

m U m Taking in particular a subset {x,}l c X, and noting that s p{(%, =1 ] y*(x,) 12)1/2; 

y,~t~, [ly*ll s 1} =sup{(~i~llx*(xi)12)l /2;  x*EX* ,  Ilx*[I s 1}, we get from 

(22) 
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\1/2 
(i=~1 ]l xil[ 2) <~ I] T-1 1] :,=x ~" ][ rx, 112) x/2 

161 

<=K~IIT-~IIIITIIIIPIIsup{ l : ( x , ) l  ~ ; x*~X*,llx*ll <1}  

).2 
= god(X,l~)~(X)sup I : ( x , ) l  ~ ; : ~ X * ,  I1:1! < 1~, 

i 

which yields (12). 
Using (21) we can improve on Corollary 2 [3.], 

COROLLARY. Let X be an n-dimensional subspace of I l, then 

,~(X) >= K~ -2/3 n 1/3. 

Proof. Let I: X-+ l x be tbe formal identity operator on X, and J be the 
operator embedding X in l oo and let e > 0. Y = J X  is isometric to X, hence 
there is a projection P of l °° onto Y such that IIPII __< ~ (x )+  ,. Now, iJ-XP 
maps the -2'oo,1 +, space l ~° into the Lal, 1 +, space 11, so that for any subset (Yi)~ c l ~° 
we have by (21), 

( (1/2 {( ' " 2  1 y, ltis-'ey, ll ~ =<_K~(a+~)~]lis-'Pllsup Z ly*(y,)l ~) ;lly*ll=<x . 
1 = 1  i = 1  

If in particular {y,}'~ c Y, we get IlIs-'Py, II = II y,[I and 

{ } } sup ~ ly,(y312;lly,]l <= 1,y 'e ( / °° )  * = s u p  ly*(y,)]2;l]y*ll<l,y*eY * , 
i = l  i 

from which it follows that 1 < KG(1 + e)2(2(X)+ e)p2(JX), and since e was 
arbitrary and J X  isometric to X, we obtain KGp2(X)2(X) > 1. 

Applying now the inequality #~(X) < pl(X) ~ 2p(X) =< n -1 2(X),  the proof is 
concluded. 

7. P r o o f  of  T h e o r e m  5. We shall write f (n)  < g(n) (or g(n) >f(n))  whenever 
f ,  g are positive functions defined on the integers and sup,(f(n)/g(n)) < oo. It is 
easily verified from (3) that #p(l 2) ~ n -1/2 for fixed values of p, and since 
d(l 2, l~) = n lr/2- i/~l for any 1 < r < oo (see [3-] for information and reference), 
we get by (16) 

(23) 2 2 r lip(l. ") < i~,(l~)d(l. , l ,) ,~n - l l ' ,  i f 2 _  r -  09. 

Let r' = r/(r - 1) and {el}I= 1, :e *x " be the natural bases o f / . ' a n d  1 ."= (l'.*) 
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respectively, and let 0({e*}) = 1/n for  every 1 < i _< n. It follows f rom the second 

par t  o f  Theorem 1, that  

)'" 
(24) IX,(I~ _> inf [e,*(x)l'n -1 -- n-'/" in f ( l lxb / l lx l l , )  - -  

llxll.=l 1 

= m i n { n - i l P , n - * l ' } .  

Combining  (23) and (24), we get 

(25) Ixp0~') ~ n- l / " ,  i f  p > r > 2. 

By the definit ion o f  Ixp(t~) we have that  

: ( I,)'" 
(26) Ixp(l.") < sup ~: Ix*(e,)l" II e, 

IIx*ll=l i=l i 

- -  n - f , ,  sup(ll x II,/11 x II,,) = m a x  {n-lip, n-ll"}, 
and on  taking (24) and (26) we see that  

(27) Ixp(l~ .., ~ i /p,  i f  r > p > r ' .  

Using the equivalence p l (X)  < 2IX(X) < 2IXl(X) and the result 

Ix(l,") .-, rain {n- 1/2, n- i/ , '  } 

o f  [3] and (13), we obtain 

(28) Ixp(l~ > Ixl(I~') "~ min {n - 1/2, n-  l#,' }, for  1 < r < oo. 

I f  r > r '  > p > 1 we get by (28) Ixp(l,') > n-11,', and by (26) Ixp(~) < n-1/,  

that  is 

(29) Ixp(l~') N n -1#' '  ' i f  r ~ r '  > p > 1. 

Summing up, we see that  equat ions  (25), (27) and (29) conclude with the cas 

r=>2,  o o > p > l .  

When  1 < r < 2, it follows from (20) that  

Ix~,(l,") lift',,') < n-  1 d(t~, g) = n 1112-1/,I- i, 

whence by (25), Ixp(l~') < n -1#2 i f p  > r '  > 2. For  p = 1 IXI(I',) " Ix(l,') --. n - lSz[3] ,  

so that  on using (13) we have for p > r '  > 2 and r '  > q > 1, 

n -11~ < Ix~(I9 <= Ix~(t9 < Ix~,(i.') < n - ' ~  9 

that  is Ixp(l~ ~ n-112 for every 1 < r < 2 and 1 < p < oo. 
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